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A multiple-scale perturbation expansion is applied to extract a closed system of two
equations governing the scalar descriptors of the turbulence energy spectrum from
a spectral closure model. The result applies when the length scale and total energy
input of a force that maintains a steady state of homogeneous isotropic turbulence
are perturbed slowly and the energy spectrum consequently evolves slowly compared
to the time scales of the turbulence itself.

1. Introduction
Two-equation modelling is motivated by Kolmogorov’s theory of the universal small

scales in turbulent flows, which implies that a statistically steady state of isotropic
turbulence is determined by its kinetic energy k and energy flux ε. The beautiful and
useful consequence is that the infinite number of scales of motion in a turbulent flow
can be described by only two parameters.

But Kolmogorov’s theory strictly applies only to a steady state. To obtain practically
useful results, two additional assumptions are generally introduced in deriving models.
The first is that a time-dependent turbulent state can be described by the time-varying
parameters k(t) and ε(t), provided that these parameters vary slowly relative to the
time scales of the turbulent fluctuations. This assumption seems justifiable in a very
broad range of applications. But a second assumption departs much farther from the
Kolmogorov theory and is far less obviously justifiable: it asserts that the parameters
k(t) and ε(t) satisfy closed equations of motion. No fundamental considerations justify
this assertion, which is made simply to permit the formulation of models.

This paper treats this second assumption as a theoretical question: given that the
energy spectrum can be described by two parameters, can it be demonstrated that
these parameters satisfy closed equations of motion, and if not in general, under what
conditions? Our purpose is to decide whether these equations exist; their formulation
if they do, and their utility for modelling are separate problems that we do not address.
The question will be posed in the simplest possible case of statistically non-stationary
homogeneous isotropic turbulence. Despite its apparent simplicity, this provides a
good test problem, because two-equation modelling is most likely to be valid in this
case, if it is valid at all.

A two-equation description of slow spectral evolution will be derived for a particular
spectral closure: the Heisenberg model (Batchelor 1953). The relevant properties of
this model are that it is consistent with a Kolmogorov steady state and that it
provides a dynamic theory of spectral evolution due to perturbations about this state.
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It permits the study, in an analytically simple setting, of the question of when the
coupled evolution of an infinite number of scales of motion can be replaced by two
equations.

The derivation is based on an expansion for the energy spectrum about a base
state using multiple-scale perturbation methods; in the present study, the base state
is homogeneous isotropic turbulence maintained by steady forcing, as in the two-
scale formalism of Yoshizawa (1998). The parameters that define the base state are
allowed to vary slowly; solvability conditions that allow the perturbation expansion to
proceed to higher order are used to derive evolution equations for the slowly varying
parameters. The perturbation parameter will be identified with the ratio of the large-
eddy turnover time to the rate of change of the turbulence statistics; in agreement with
intuitive expectations, this ratio must be small in order for reduced-order modelling
to be possible.

The analysis naturally recovers the energy balance as one equation. The second
equation that emerges is neither a dissipation-rate transport equation of the standard
form (Jones & Launder 1972), nor a moment evolution equation of the type sought
by Laporta (1995), Besnard et al. (1996), Clark (1999) and others. In contrast to
these references and other attempts to derive a two-equation model theoretically as-
suming a time-dependent Kolmogorov spectrum (for example, Yakhot & Smith 1992;
Rubinstein & Zhou 1996), the present analysis focuses on the role of perturbations
to the base state. Such perturbations are described by the energy transfer linearized
about the base state; the null space of the adjoint of the linearized energy transfer
is shown to determine the number and nature of the equations in the model. The
second equation obtained by this procedure depends on the choice of the base
state: selecting a self-similar time-dependent state, for example decaying isotropic
turbulence, homogeneous shear flow or one of the infinite number of self-similar
states identified for homogeneous isotropic turbulence in Rubinstein & Clark (2005),
will lead to a different model. Thus, while our conclusions support finite-dimensional
modelling of slowly varying turbulence, they contradict the idea that such modelling
can be universal.

2. Derivation of a two-equation model from the Heisenberg closure
The general spectral evolution equation for homogeneous isotropic turbulence is

(Batchelor 1953)

∂

∂t
E(κ, t) = P (κ, t) − T (κ, t) − D(κ, t), (2.1)

where E(κ, t) is the energy spectrum, P (κ, t) is the production spectrum, T (κ, t) is
the nonlinear energy transfer, and D(κ, t) = 2νκ2E(κ, t) is the dissipation spectrum.
Conservation of energy by nonlinear interaction implies that

∫ ∞
0

dκ T (κ, t) = 0. It

is convenient to introduce the spectral energy flux F(κ, t) =
∫ κ

0
dµ T (µ, t) where

F(0, t) = F(∞, t) ≡ 0, in terms of which (2.1) takes the conservation form

∂

∂t
E(κ, t) = P (κ, t) − ∂F

∂κ
(κ, t) − D(κ, t). (2.2)

In the Heisenberg closure, the flux F is the functional of the energy spectrum E,

F[E(κ, t)] = CHα(κ, t)β(κ, t) = CH

∫ κ

0

dµ µ2E(µ, t)

∫ ∞

κ

dp E(p, t)θ(p, t) (2.3)
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with the time-scale closure θ(p, t) = [
√

p3E(p, t)]−1. The first factor α is the square
of the strain due to modes with wavenumbers less than κ , and β is a viscosity formed
from modes with wavenumbers greater than κ . The constant CH can be chosen to
match the (empirically given) Kolmogorov constant, but its value will be irrelevant in
this analysis.

The Heisenberg model is the simplest closure that captures the role of nonlinear
interactions over a continuous range of scales of motion in turbulent energy transfer;
it can be obtained (Kraichnan 1987) as a limit of a much more sophisticated closure,
the Kraichnan (1971) test-field model. Although more refined models of energy
transfer exist, the Heisenberg model permits an analysis of the possibility of replacing
an infinite coupled system by a finite number of equations in an analytically tractable
setting, and can help us understand when this replacement is possible, how many
equations are necessary, and how we can find these equations if they exist.

The starting point is steady-state homogeneous isotropic turbulence driven by
statistically steady isotropic forcing. This state is defined by the time-independent
form of (2.1):

P (κ) − T (κ) − D(κ) = 0. (2.4)

The production spectrum is assumed to be concentrated near some dominant scale
LP and to be characterized completely by LP and the total rate of energy production,
P̄ =

∫ ∞
0

dκ P (κ). The production spectrum therefore admits the two-parameter

description P (κ) = P (κ; P̄ , LP ), where different pairs (P̄ , LP ) are understood to give
different spectra P (κ). The functional form of P (κ; P̄ , LP ) will be considered fixed
throughout.

In agreement with the Kolmogorov theory, the Heisenberg model predicts an energy
spectrum E(κ) that can be characterized for wavenumbers κ � κd , the Kolmogorov
scale, by its dissipation rate ε and by a spectral integral scale L; the definition of L

is not unique, but it will be convenient to assume that is defined so that in a steady
state, L =LP . In a steady state, P̄ =

∫ ∞
0

dκ D(κ) = ε, therefore we have

P (κ) = P (κ; P̄ , LP ) = P (κ; ε, L), E(κ) = E(κ; ε, L) with ε = P̄ , L = LP ,

(2.5)

so that the steady energy spectrum has the same two-parameter structure as
the production spectrum, with coincident scalar descriptors. The two-parameter
description of the energy spectrum assumes that we are in the high-Reynolds-number
limit, in which κd → ∞, ν → 0, while ε ∼ ν3κ4

d remains constant. In this limit, D(κ) can
be ignored in (2.4) and the energy balance maintained by setting F(∞) = ε.

2.1. Perturbation expansion and solvability condition

We wish to pass from this static state to a temporally evolving state. Regardless of
any special properties of the time evolution, one equation must always be satisfied:
the equation for the kinetic energy k(t) =

∫ ∞
0

dκ E(κ, t) found by integrating (2.2)
over all κ:

∂k

∂t
= P̄ (t) − ε(t). (2.6)

We will now define a special type of temporal evolution appropriate for multiple-scale
perturbation theory. We assume that P (κ, t) and E(κ, t) can still be characterized by
the parameters P̄ , LP , ε, L, but that these parameters all vary slowly in time; thus,
LP =LP (τ ), P̄ = P̄ (τ ), L = L(τ ), ε = ε(τ ), where τ = δt with δ a small parameter that
will be characterized shortly. Consider a slowly varying time-dependent reference state
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described by ε0(τ ) and L0(τ ), and assume that the last two equalities in (2.5) that
link the production spectrum and the energy spectrum are only weakly perturbed, so
that P̄ (τ ) − ε0(τ ) and LP (τ ) − L0(τ ) are both of order δ: we write these conditions
in the normalized form 
P̄ (τ ) ≡ [P̄ (τ ) − ε0(τ )]/δ =O(1) and 
LP (τ ) ≡ [LP (τ ) −
L0(τ )]/δ =O(1) so that

P̄ = ε0 + δ
P̄ , LP = L0 + δ
LP . (2.7)

In order to permit these perturbations to develop, the steady production spectrum in
(2.5) is replaced by

P (κ, t) = P0(κ; ε0(τ ), L0(τ )) + δP1(κ; P̄ (τ ), LP (τ ); ε0(τ ), L0(τ )) (2.8)

where we have written P0(κ; ε0, L0) for P (κ; ε0, L0) to emphasize that we are
perturbing about the reference state with parameters (ε0, L0). Then the energy
spectrum admits the corresponding expansion

E(κ, t) = E0(κ; ε0(τ ), L0(τ )) + δE1(κ; P̄ (τ ), LP (τ ); ε0(τ ), L0(τ )) + · · · . (2.9)

Although no particular form of the production perturbation P1 will be specified, we
will assume that this perturbation vanishes if P̄ = ε and LP =L; thus, P1(κ; ε, L;
ε, L) ≡ 0 and Taylor series expansion shows that δP1 depends on P̄ and LP through
the O(δ) differences P̄ − ε0 and LP − L0. For example, we could set δP1 to the linear
part of the Taylor series expansion of P (κ; P̄ , LP ) − P (κ; ε0, L0) about P (κ; ε0, L0) in
powers of P̄ − ε0 and LP − L0.

Following the standard method of multiple-scale perturbation analysis, (2.8) and
(2.9) impose slow temporal variation of P (κ, t) and E(κ, t) by requiring that they
depend on time through a slow time variable. The expansion (2.9) induces expansions
of single-point moments k = k0 + δk1 + · · · and ε = ε0+δε1+· · · where ki =

∫ ∞
0

dκEi(κ)

and εi =
∫ ∞

0
dκ2νκ2Ei(κ). Similarly, since regardless of how L is defined, it is

a functional of E, we also have the expansion L =L0 + δL1 + · · ·. If the slow
evolution of turbulence quantities is such that (∂L/∂τ )/L ∼ (∂ε/∂τ )/ε ∼ ε/k, then
(∂L/∂t)/L ∼ (∂ε/∂t)/ε ∼ δ(ε/k), and therefore δ ∼ (ε̇/ε)(k/ε) ∼ (L̇/L)(k/ε), where the
overdot denotes ∂/∂t . Therefore, the expansion parameter δ is the ratio of the large-
eddy turnover time and the characteristic time over which the statistics vary.

Substituting (2.9) in (2.2) leads to the quasi-steady relation

P0 − ∂F[E0]/∂κ − D0 = 0 (2.10)

for E0 at lowest order. This equation is satisfied because the time-dependent
parameters in E0 coincide with those in P0; thus, to lowest order, the energy spectrum
instantaneously adjusts to the time-dependent production spectrum. At the next order,
we obtain an equation for E1:

∂

∂κ
L[E1(κ, τ )] = − ∂

∂τ
E0(κ; ε0(τ ), L0(τ )) + P1(κ, τ ) − D1(κ, τ ). (2.11)

The complete argument lists in E1 and P1 are understood, but have been suppres-
sed for conciseness. Note that the time derivative of E0, ignored at leading order
in (2.10), appears as part of the inhomogeneous term in an equation for E1; this
is consistent with treating the time dependence of E0 as a small perturbation. The
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linear operator L in (2.11) is the Fréchet derivative of F at E0:

L[E1(κ, τ )] = − 1
2
CHα(κ, τ )

∫ ∞

κ

dp β ′(p, τ )
E1(p, τ )

E0(p, τ )

+ CHβ(κ, τ )

∫ κ

0

dµ α′(µ, τ )
E1(µ, τ )

E0(µ, τ )
(2.12)

where the primes denote derivatives with respect to the wavenumber argument. The
appearance of D1 on the right-hand side of (2.11) will be justified subsequently.

Equation (2.11) can only have a solution if its right-hand side is orthogonal to the
null space of the linear operator on the left-hand side. This solvability condition (or
conditions; there will be as many conditions as there are dimensions of the null space)
provides equations for the slowly varying quantities ε and L. The adjoint of the linear
operator on the left-hand side of (2.11) is L†∂/∂κ with the adjoint of L given by

L†[Φ(κ, τ )] = CH

α′(κ, τ )

E0(κ, τ )

∫ ∞

κ

dp β(p, τ )Φ(p, τ )− 1
2
CH

β ′(κ, τ )

E0(κ, τ )

∫ κ

0

dµ α(µ, τ )Φ(µ, τ ).

(2.13)

Note that E1 satisfies homogeneous boundary conditions E1(0) = E1(∞) = 0.

2.2. Solution of the adjoint equation

We are seeking solutions Ψ of the homogeneous equation

L†
[
∂Ψ

∂κ

]
= 0. (2.14)

One solution is immediately obvious: Ψ ≡ 1. We will show that the equation
L†[Φ] = 0 has exactly one more solution; the general solution of (2.14) is therefore
Ψ = AΨ1 + BΨ2, where Ψ1 = 1, and Ψ2 =

∫ κ

0
dp Φ(p).

The solution Φ is constructed by writing (2.14) using (2.13) as

α′(κ)

β ′(κ)
M(κ) − 1

2
N(κ) = 0, (2.15)

with M(κ) =
∫ ∞

κ
dµ β(µ)Φ(µ) and N(κ) =

∫ κ

0
dp α(p)Φ(p). Using N ′ = −(α/β) M ′,

the derivative of (2.15) may be written M ′ + W (κ)M = 0, where

W (κ) =
(α′(κ)/β ′(κ))′

α′(κ)/β ′(κ) + 1
2
α(κ)/β(κ)

. (2.16)

This equation has the solution M(κ) = exp(−
∫ κ

0
dp W (p)). Then Φ(κ) = −M ′(κ)/β(κ)

and

Ψ2(κ) =

∫ κ

0

dµ
W (µ)

β(µ)
exp

(
−

∫ µ

0

dp W (p)

)
. (2.17)

2.3. Application of solvability conditions

Solvability conditions are now obtained by multiplying (2.11) by the functions Ψ1 and
Ψ2 and integrating over all κ . Since Ψ1 and Ψ2 are solutions of the adjoint equation,
the left-hand side will be zero after this integration; the result can therefore be written
as ∫ ∞

0

dκ Ψi(κ)
∂

∂τ
E0(κ, ε(τ ), L(τ )) =

∫ ∞

0

dκ Ψi(κ)[P1(κ, τ ) − D1(κ, τ )], i = 1, 2.

(2.18)
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Here and henceforth, the subscript 0 will be suppressed in ε and L, as we will only
solve for the lowest-order quantities ε0 and L0. Without loss of generality, E0 may be
represented by appealing to dimensional analysis as

E0(κ; ε(τ ), L(τ )) = ε(τ )2/3L(τ )5/3φ̂(κL(τ )), (2.19)

in terms of a dimensionless function φ̂; this expression coincides with the Besnard
et al. (1996) spectral ansatz. Note that

∂

∂τ
E0(κ, ε(τ ), L(τ )) = 2

3
ε(τ )−1/3L(τ )5/3φ̂(κL(τ ))

∂ε

∂τ

+ (ε(τ )L(τ ))2/3
(

5
3
φ̂(κL(τ )) + (κL(τ ))φ̂′(κL(τ ))

)∂L(τ )

∂τ
. (2.20)

The production perturbation on the right-hand side of (2.18) is also represented in a
normalized form as

P1(κ; P̄ (τ ), LP (τ ); ε(τ ), L(τ )) = ε(τ )p̂1(κL(τ ); P̄ (τ ), LP (τ ); ε(τ ), L(τ )). (2.21)

Substituting (2.20) and (2.21) in (2.18), we obtain

ε−1/3L2/3I 1
i (ε, L)

∂ε

∂τ
+ (εL)2/3I 2

i (ε, L)
∂L

∂τ
= εI 3

i (P̄ , LP ; ε, L)

−
∫ ∞

0

dκ Ψi(κL)D1(κ, τ ), i = 1, 2, (2.22)

where

I 1
i (ε, L) =

2

3

∫ ∞

0

dp Ψi(p)φ̂(pL),

I 2
i (ε, L) =

∫ ∞

0

dp Ψi(p)(5/3φ̂(pL) + (κL)φ̂′(pL)),

I 3
i (P̄ , LP ; ε, L) =

∫ ∞

0

dp Ψi(p)p̂1(pL; P̄ , LP ; ε, L).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.23)

We claim that both terms containing D1 in (2.22) vanish in the high-Reynolds-number
limit. Assuming tentatively that this is true, (2.22) is replaced by

ε−1/3L2/3I 1
i (ε, L)

∂ε

∂τ
+ (εL)2/3I 2

i (ε, L)
∂L

∂τ
= εI 3

i (P̄ , LP ; ε, L), i = 1, 2. (2.24)

Equation (2.24) with the definitions (2.23) is the required two-equation model. It
describes the slow variation of the spectral parameters ε(τ ) and L(τ ) due to slow
changes of production through P̄ (τ ) and slow changes of the forcing length scale
through LP (τ ). The term inside parentheses in the definition of I 2

i vanishes on a
Kolmogorov spectrum and these integrals are therefore dominated by contributions
from the largest scales. As noted earlier, the production perturbation depends on the
differences P̄ (τ )− ε(τ ) and LP (τ )−L(τ ); thus, the driving terms in this model appear
in I 3

i through the differences 
P̄ and 
LP . Since the production perturbation P1

has been assumed to vanish if 
P̄ =
LP = 0, or P̄ = ε and LP = L, I 3
1 and I 3

2 both
vanish under these conditions.

We remark that the solution of (2.11) satisfies E1 ∝ ε̇/ε. Dimensional analysis
therefore gives E1 ∼ (ε̇/ε)ε1/3κ−7/3, so that E1 exhibits the κ−7/3 scaling proposed by
Yoshizawa (1994) for time-dependent turbulence. This scaling can also be expressed as
E1 ∼ (ε̇/ε)[ε1/3κ2/3]−1E0. Thus, E1/E0 ∼ (ε̇/ε)/(ε1/3κ2/3), the ratio of the turnover time
at wavenumber κ to the time scale of evolution of ε. Then E1/E0 ∼ (ε̇/ε)(k/ε)(κL)−2/3;
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the maximum value of this ratio occurs when κL ≈ 1, confirming that the expansion
parameter of the theory is indeed (ε̇/ε)(k/ε) (Rubinstein & Clark 2005).

It remains to justify dropping the D1 terms in (2.22). For the first equation, in which
Ψ1 ≡ 1, the viscous term represents a correction to the leading-order dissipation,
ε1 = 2ν

∫ ∞
0

dκκ2E1. We can estimate this term using the result just noted that

E1 ∼ κ−7/3. Since its integrand is of order κ−1/3, the integral defining ε1 will be domina-
ted by large wavenumbers. Then ε1 ∼ νκ

2/3
d ∼ κ

−2/3
d ∼ ν1/2, where κd is the Kolmogorov

scale; therefore the correction to the dissipation vanishes in the limit ν → 0. It will
be shown in the next section that Ψ2 ∼ κ−4 at large κ . In this case, the integral
2ν

∫ ∞
0

dκΨ2κ
2E1 converges at large wavenumbers; since it is therefore of order ν, this

integral also vanishes in the high-Reynolds-number limit.

2.4. General structure of the model

Our goal was to find conditions, if any exist, under which a two-equation model can
be justified, using standard multiple-scale perturbation theory. Nevertheless, it may be
useful to note some general properties of the result. Since Ψ1 = 1, the first solvability
condition is the kinetic energy balance; (2.22) with i = 1 states this balance in terms
of the variables L and ε; (2.6) would have emerged directly if the spectrum had been
expressed in terms of k and ε instead of in terms of L and ε.

The consequence of this analysis is that ε(τ ) and L(τ ), which together characterize
the leading-order energy and production spectra, are found by solving the com-
patibility conditions; neither is known in advance. This structure is familiar in
multiple-scale perturbation analysis, but at variance with standard models, which
treat the production as a known driving force. In the present model, it is the
increments 
P̄ and 
LP that are arbitrary, subject only to the requirements of slow
temporal variation and small amplitude imposed by the multiple-scale analysis. The
total production and production length scale are recovered through (2.7).

The explicit formulation of the second compatibility equation requires knowing
the function Ψ2, but since the expression for Ψ2 in (2.17) is rather complicated, it
may be helpful to consider its behaviour in an inertial range. Assuming Kolmogorov
scaling, α ∼ (3/4)κ4/3 and β ∼ (3/4)κ−4/3; consequently, W ∼ (16/3)κ−1 and Ψ2 ∼ κ−4.
This strong concentration of Ψ2 at large scales justifies ignoring the viscous term in
(2.22) when i = 2. This equation is therefore very sensitive to the integral scale, and is
essentially independent of the inertial range.

3. Conclusions
The present derivation of a two-equation model that describes slow spectral

evolution near a steady state of isotropic turbulence places the understanding of
such modelling in the properties of the linearized energy transfer L, and identifies its
adjoint, L† as the key object: the dimension of its null-space determines the number
of equations in the model and its null vectors detemine the analytical structure of the
relevant equations. From this viewpoint, it is evident that the analysis can be applied
to more realistic closure theories like the direct interaction approximation (Kraichnan
1959), test-field model (Kraichnan 1971), or Lagrangian renormalized approximation
(Kaneda 1981).

Existing empirical models (Reynolds 1976) assume a general form for the two-
equation model, which is calibrated to reproduce the behaviour of some simple
self-similar flows. Without in any way deprecating the practical utility of such models,
we note that this procedure leaves completely unanswered the question of whether
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the result can be validly applied away from the self-similar calibration cases. In
assuming that it can, the empirical approach makes the unsubstantiated assumption
that turbulence is itself a kind of ‘fluid’ with the same ‘properties’ in all flows.
In contrast, the present approach provides genuine dynamic equations for ε and L

without postulating self-similarity or requiring calibration; the equations are restricted
only by the assumptions of small-amplitude, slowly varying perturbations that underly
the perturbation expansion.

Previous theoretical treatments of the dissipation-rate transport equation have been
based either on a Kolmogorov spectrum (for example, Laporta 1995; Yakhot & Smith
1992; Rubinstein & Zhou 1996) or on an exactly self-similar state (for example,
Besnard et al. 1996; Clark 1999). From the viewpoint of our perturbation theory
expressed in (2.9), assuming a Kolmogorov state means that the energy spectrum
is characterized by E0 alone. Then integration of (2.10) simply gives P̄ = ε0. No
other conclusion is possible if the perturbation expansion stops at E0; we therefore
believe these theoretical analyses must be inconclusive. The present analysis instead
emphasizes the role of the perturbations to the local Kolmogorov spectrum E0 in
statistically non-stationary turbulence that were first identified by Yoshizawa (1994).
This point is also discussed by Rubinstein & Clark (2005).

Theoretical treatments based on self-similarity have tended to emphasize that the
validity of models is in fact restricted to self-similar flows (Clark 1999), where the
model is understood to state certain special scaling invariance properties (Clark &
Zemach 1998) rather than general equations of motion. A fundamental difficulty
then arises, because an infinite number of self-similar states is possible (Rubinstein
& Clark 2005). In principle, the present analysis could be applied to perturbations
about self-similar time-dependent states, but it should be noted that the multiple-scale
perturbation theory based on a time-dependent reference state is considerably more
complicated.

The model is derived by a multiple-scale perturbation expansion with some formal
analogies to the Chapman–Enskog expansion of kinetic theory. Thus, the leading-
order spectrum E0(κ, ε(τ ), L(τ )) is a ‘local Kolmogorovian’ analogous to the local
Maxwellian of kinetic theory, although here we focus on temporal rather than
spatial variation. In both cases, the failure of the ‘local’ solution to satisfy the
governing equations generates the perturbation expansion. The Fréchet derivative L is
analogous to the linearized collision integral, but because steady-state turbulence is far
from thermal equilibrium, this operator is not self-adjoint. However, the main result,
a compatibility equation, is of course common to general multiple-scale perturbation
expansions.

We conclude by noting two possible extensions of this work. The discussion of
closure theories naturally suggests the question of whether a similar analysis might
apply to simulation data without the intervention of closure. Closure expresses the
energy transfer in terms of the energy spectrum; we cannot assume this relation in
simulation data. A simplification is provided by the (statistical) assumption that all
moments depend on time only through two slowly varying properties. This assumption
may lead to a closure for the increments of statistics, which is all that is required by
this type of analysis. Obviously however, this remains a topic for future investigation.

The restriction of this analysis to temporal non-stationarity with spatial homo-
geneity leaves important modelling issues unaddressed. Slow and fast time variables
were introduced in the multiple-scale analysis, but it is likely that the analysis could
be extended to inhomogeneous flows by introducing large- and small-scale spatial
variables as in the two-scale direct interaction approximation formalism of Yoshizawa
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(1984, 1998). From the viewpoint of perturbation theory, this simple approach is open
to the objection that it assumes weak inhomogeneity at the outset. A more general
approach might begin with a general inhomogeneous closure theory like that of
Kraichnan (1972), and seek spatial analogues of the temporal local Kolmogorov
spectrum used in this paper.
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